Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Thorax ; 77(6): 606-615, 2022 06.
Article in English | MEDLINE | ID: covidwho-2316148

ABSTRACT

PURPOSE: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. METHODS: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. RESULTS: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, -0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. CONCLUSION: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making. TRIAL REGISTRATION NUMBER: ISRCTN66726260.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/therapy , Hospital Mortality , Humans , Observational Studies as Topic , Prognosis , SARS-CoV-2 , State Medicine , World Health Organization
2.
J Infect ; 86(6): 574-583, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303587

ABSTRACT

BACKGROUND: Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS: Com-COV2 was a single-blinded trial in which adults ≥ 50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS: In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N = 540, 45% female) or BNT (N = 532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95% CI (confidence interval): 8.2, 11.5) at D28 to 6.2 (95% CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95% CI:2.5,3.5) to 2.4 (95% CI:1.9, 3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The adjusted GMR (aGMR) for BNT/Mod compared with BNT/BNT increased from 1.36 (95% CI: 1.17, 1.58) at D28 to 1.52 (95% CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95% CI: 0.47, 0.64) at day 28 and 0.62 (95% CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION: Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN: 27841311 EudraCT:2021-001275-16.


Subject(s)
COVID-19 , Vaccines , Adult , Female , Humans , Male , COVID-19 Vaccines , ChAdOx1 nCoV-19 , BNT162 Vaccine , Pandemics , Single-Blind Method , COVID-19/prevention & control , Vaccination , Immunity , Immunoglobulin G , Antibodies, Viral
3.
Lancet Digit Health ; 4(4): e220-e234, 2022 04.
Article in English | MEDLINE | ID: covidwho-2300736

ABSTRACT

BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70-0·89], p=0·0001, for 70-79 years; 0·52 [0·46-0·58], p<0·0001, for >80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75-80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council.


Subject(s)
COVID-19 Drug Treatment , Adolescent , Adrenal Cortex Hormones/therapeutic use , Cohort Studies , Female , Humans , Pregnancy , Prospective Studies , United Kingdom , World Health Organization
4.
Rheumatology (Oxford) ; 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2273579

ABSTRACT

OBJECTIVES: To investigate the association between vaccination against Covid-19 and autoimmune rheumatic disease (AIRD) flare. METHODS: Patients with AIRDs vaccinated against Covid-19 who consulted for disease flare between 01/12/2020 and 31/12/2021 were ascertained in Clinical Practice Research Datalink (Aurum). AIRD flare was defined as consultation for AIRD with corticosteroid prescription on the same day or the next day. Vaccination was defined using date of vaccination and product code. The observation period was partitioned into vaccine-exposed (21-days after vaccination), pre-vaccination (7-days before vaccination), and remaining vaccine-unexposed periods. Participants contributed data with multiple vaccinations and outcomes. Season adjusted incidence rate ratios (aIRR) and 95% confidence intervals (CI) were calculated using self-controlled case-series analysis. RESULTS: Data for 3554 AIRD cases, 72% female, mean age 65 years, and 68.3% with rheumatoid arthritis were included. Covid-19 vaccination was associated with significantly fewer AIRD flares in the 21-day vaccine-exposed period when all vaccinations were considered (aIRR(95%CI) 0.89(0.80-0.98)). Using dose-stratified analyses there was a statistically significant negative association in 21-days after first Covid-19 vaccination but no association after the second or third Covid-19 vaccinations (aIRR(95%CI) 0.76(0.66-0.89), 0.94(0.79-1.11) and 1.01(0.85-1.20) respectively). On AIRD type stratified analyses, vaccination was not associated with disease flares. Vaccination without or after SARS-CoV-2 infection, and with vectored DNA or mRNA vaccines associated with comparable reduced risk of AIRD flares in the vaccine-exposed period after first Covid-19 vaccination. CONCLUSION: Vaccination against Covid-19 was not associated with increased AIRD flares regardless of prior Covid-19, AIRD type, and whether mRNA or DNA vaccination technology were used.

5.
Pediatr Res ; 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-2236037

ABSTRACT

BACKGROUND: We hypothesised that the clinical characteristics of hospitalised children and young people (CYP) with SARS-CoV-2 in the UK second wave (W2) would differ from the first wave (W1) due to the alpha variant (B.1.1.7), school reopening and relaxation of shielding. METHODS: Prospective multicentre observational cohort study of patients <19 years hospitalised in the UK with SARS-CoV-2 between 17/01/20 and 31/01/21. Clinical characteristics were compared between W1 and W2 (W1 = 17/01/20-31/07/20,W2 = 01/08/20-31/01/21). RESULTS: 2044 CYP < 19 years from 187 hospitals. 427/2044 (20.6%) with asymptomatic/incidental SARS-CoV-2 were excluded from main analysis. 16.0% (248/1548) of symptomatic CYP were admitted to critical care and 0.8% (12/1504) died. 5.6% (91/1617) of symptomatic CYP had Multisystem Inflammatory Syndrome in Children (MIS-C). After excluding CYP with MIS-C, patients in W2 had lower Paediatric Early Warning Scores (PEWS, composite vital sign score), lower antibiotic use and less respiratory and cardiovascular support than W1. The proportion of CYP admitted to critical care was unchanged. 58.0% (938/1617) of symptomatic CYP had no reported comorbidity. Patients without co-morbidities were younger (42.4%, 398/938, <1 year), had lower PEWS, shorter length of stay and less respiratory support. CONCLUSIONS: We found no evidence of increased disease severity in W2 vs W1. A large proportion of hospitalised CYP had no comorbidity. IMPACT: No evidence of increased severity of COVID-19 admissions amongst children and young people (CYP) in the second vs first wave in the UK, despite changes in variant, relaxation of shielding and return to face-to-face schooling. CYP with no comorbidities made up a significant proportion of those admitted. However, they had shorter length of stays and lower treatment requirements than CYP with comorbidities once those with MIS-C were excluded. At least 20% of CYP admitted in this cohort had asymptomatic/incidental SARS-CoV-2 infection. This paper was presented to SAGE to inform CYP vaccination policy in the UK.

6.
Lancet ; 401(10373): 281-293, 2023 01 28.
Article in English | MEDLINE | ID: covidwho-2165973

ABSTRACT

BACKGROUND: The safety, effectiveness, and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, has not been established in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19. We aimed to establish whether the addition of molnupiravir to usual care reduced hospital admissions and deaths associated with COVID-19 in this population. METHODS: PANORAMIC was a UK-based, national, multicentre, open-label, multigroup, prospective, platform adaptive randomised controlled trial. Eligible participants were aged 50 years or older-or aged 18 years or older with relevant comorbidities-and had been unwell with confirmed COVID-19 for 5 days or fewer in the community. Participants were randomly assigned (1:1) to receive 800 mg molnupiravir twice daily for 5 days plus usual care or usual care only. A secure, web-based system (Spinnaker) was used for randomisation, which was stratified by age (<50 years vs ≥50 years) and vaccination status (yes vs no). COVID-19 outcomes were tracked via a self-completed online daily diary for 28 days after randomisation. The primary outcome was all-cause hospitalisation or death within 28 days of randomisation, which was analysed using Bayesian models in all eligible participants who were randomly assigned. This trial is registered with ISRCTN, number 30448031. FINDINGS: Between Dec 8, 2021, and April 27, 2022, 26 411 participants were randomly assigned, 12 821 to molnupiravir plus usual care, 12 962 to usual care alone, and 628 to other treatment groups (which will be reported separately). 12 529 participants from the molnupiravir plus usual care group, and 12 525 from the usual care group were included in the primary analysis population. The mean age of the population was 56·6 years (SD 12·6), and 24 290 (94%) of 25 708 participants had had at least three doses of a SARS-CoV-2 vaccine. Hospitalisations or deaths were recorded in 105 (1%) of 12 529 participants in the molnupiravir plus usual care group versus 98 (1%) of 12 525 in the usual care group (adjusted odds ratio 1·06 [95% Bayesian credible interval 0·81-1·41]; probability of superiority 0·33). There was no evidence of treatment interaction between subgroups. Serious adverse events were recorded for 50 (0·4%) of 12 774 participants in the molnupiravir plus usual care group and for 45 (0·3%) of 12 934 in the usual care group. None of these events were judged to be related to molnupiravir. INTERPRETATION: Molnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among high-risk vaccinated adults in the community. FUNDING: UK National Institute for Health and Care Research.


Subject(s)
COVID-19 , Adult , Humans , Middle Aged , SARS-CoV-2 , COVID-19 Vaccines , Bayes Theorem , Prospective Studies , Treatment Outcome
8.
Lancet Respir Med ; 10(11): 1049-1060, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106218

ABSTRACT

BACKGROUND: Priming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca). METHODS: Com-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020-005085-33). FINDINGS: Between Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77-89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2-ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second dose, with geometric mean ratios of 1·4 (95% CI 1·1-1·8) for homologous BNT162b2, 1·5 (1·2-1·9) for ChAdOx1 nCoV-19-BNT162b2, 1·6 (1·3-2·1) for BNT162b2-ChAdOx1 nCoV-19, and 2·4 (1·7-3·2) for homologous ChAdOx1 nCoV-19. At 6 months post-second dose, anti-spike IgG geometric mean concentrations fell to 0·17-0·24 of the 28-day post-second dose value across all eight study groups, with only homologous BNT162b2 showing a slightly slower decay for the 12-week versus 4-week interval in the adjusted analysis. The rank order of schedules by humoral response was unaffected by interval, with homologous BNT162b2 remaining the most immunogenic by antibody response. T-cell responses were reduced in all 12-week priming intervals compared with their 4-week counterparts. 12-week schedules for homologous BNT162b2 and ChAdOx1 nCoV-19-BNT162b2 were up to 80% less reactogenic than 4-week schedules. INTERPRETATION: These data support flexibility in priming interval in all studied COVID-19 vaccine schedules. Longer priming intervals might result in lower reactogenicity in schedules with BNT162b2 as a second dose and higher humoral immunogenicity in homologous schedules, but overall lower T-cell responses across all schedules. Future vaccines using these novel platforms might benefit from schedules with long intervals. FUNDING: UK Vaccine Taskforce and National Institute for Health and Care Research.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , BNT162 Vaccine , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G
10.
Hum Vaccin Immunother ; : 2125754, 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2042488

ABSTRACT

During the COVID-19 pandemic, immunization programs for other respiratory infections, notably influenza continued worldwide but attracted less public or political attention than COVID-19 vaccinations. Due to non-pharmaceutical intervention measures the global influenza burden decreased substantially; but with lifting of restrictions a rebound in other respiratory virus pathogens is both plausible and likely. This article discusses lessons identified from the UK and USA, and provides recommendations for future influenza vaccination programs in light of emerging data from the southern hemisphere and the need for harmonization with COVID-19 vaccination, focusing on operational delivery and messaging to practitioners and the public.

11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.25.22280081

ABSTRACT

Optimising statistical power in early-stage trials and observational studies accelerates discovery and improves the reliability of results. Ideally, intermediate outcomes should be continuously distributed and lie on the causal pathway between an intervention and a definitive outcome such as mortality. In order to optimise power for an intermediate outcome in the RECOVERY trial, we devised and evaluated a modification to a simple, pragmatic measure of oxygenation function - the SaO2/FIO2 (S/F) ratio. We demonstrate that, because of the ceiling effect in oxyhaemoglobin saturation, S/F ceases to reflect pulmonary oxygenation function at high values of SaO2. Using synthetic and real data, we found that the correlation of S/F with a gold standard (PaO2/FIO2, P/F ratio) improved substantially when measurements with SaO2 > 0.94 are excluded(Spearman r, synthetic data: S/F: 0.31; S/F94: 0.85). We refer to this measure as S/F94. In order to test the underlying assumptions and validity of S/F94 as a predictor of a definitive outcome (mortality), we collected an observational dataset including over 39,000 hospitalised patients with COVID-19 in the ISARIC4C study. We first demonstrated that S/F94 is predictive of mortality in COVID-19. We then compared the sample sizes required for trials using different outcome measures (S/F94, the WHO ordinal scale, sustained improvement at day 28 and mortality at day 28) ensuring comparable effect sizes. The smallest sample size was needed when S/F94 on day 5 was used as an outcome measure. To facilitate future study design, we provide an online user interface to quantify realworld power for a range of outcomes and inclusion criteria, using a synthetic dataset retaining the population-level clinical associations in real data accrued in ISARIC4C https://isaric4c.net/endpoints. We demonstrated that S/F94 is superior to S/F as a measure of pulmonary oxygenation function and is an effective intermediate outcome measure in COVID-19. It is a simple and non-invasive measurement, representative of disease severity and provides greater statistical power to detect treatment differences than other intermediate endpoints.


Subject(s)
COVID-19
12.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.13.22278733

ABSTRACT

To (a) derive and validate risk prediction algorithms (QCovid4) to estimate risk of COVID-19 mortality and hospitalisation in UK adults with a SARS-CoV-2 positive test during the Omicron pandemic wave and (b) evaluate performance with earlier versions of algorithms developed in previous pandemic waves and the high-risk cohort identified by NHS Digital in England. Design Population-based cohort study using the QResearch database linked to national data on COVID-19 vaccination, high risk patients prioritised for COVID-19 therapeutics, SARS-CoV-2 results, hospitalisation, cancer registry, systemic anticancer treatment, radiotherapy and the national death registry. Settings and study period 1.3 million adults in the derivation cohort and 0.15 million adults in the validation cohort aged 18-100 years with a SARS-CoV-2 positive test between 11th December 2021 and 31st March 2022 with follow up to 30th June 2022. Main outcome measures Our primary outcome was COVID-19 death. The secondary outcome of interest was COVID-19 hospital admission. Models fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance evaluated in a separate validation cohort. Results Of 1,297,984 people with a SARS-CoV-2 positive test in the derivation cohort, 18,756 (1.45%) had a COVID-19 related hospital admission and 3,878 (0.3%) had a COVID-19 death during follow-up. Of the 145,404 people in the validation cohort, there were 2,124 (1.46%) COVID-19 admissions and 461 (0.3%) COVID-19 deaths. The COVID-19 mortality rate in men increased with age and deprivation. In the QCovid4 model in men hazard ratios were highest for those with the following conditions- kidney transplant (6.1-fold increase), Downs syndrome (4.9-fold); radiotherapy (3.1-fold); type 1 diabetes (3.4-fold), chemotherapy grade A (3.8-fold), grade B (5.8-fold), grade C (10.9-fold), solid organ transplant ever (2.4-fold), dementia (1.62-fold), Parkinsons disease (2.2-fold), liver cirrhosis (2.5-fold). Other conditions associated with increased COVID-19 mortality included learning disability, chronic kidney disease (stages 4 and 5), blood cancer, respiratory cancer, immunosuppressants, oral steroids, COPD, coronary heart disease, stroke, atrial fibrillation, heart failure, thromboembolism, rheumatoid or SLE, schizophrenia or bipolar disease sickle cell or HIV or SCID, type 2 diabetes. Results were similar in the model in women. COVID-19 mortality risk was lower among those who had received COVID-19 vaccination compared with unvaccinated individuals with evidence of a dose response relationship. The reduced mortality rates associated with prior SARS-CoV-2 infection were similar in men (adjusted hazard ratio (HR) 0.51 (95% CI 0.40, 0.64)) and women (adjusted HR 0.55 (95%CI 0.45, 0.67)). The QCOVID4 algorithm explained 76.6% (95%CI 74.4 to 78.8) of the variation in time to COVID-19 death (R2) in women. The D statistic was 3.70 (95%CI 3.48 to 3.93) and the Harrells C statistic was 0.965 (95%CI 0.951 to 0.978). The corresponding results for COVID-19 death in men were similar with R2 76.0% (95% 73.9 to 78.2); D statistic 3.65 (95%CI 3.43 to 3.86) and C statistic of 0.970 (95%CI 0.962 to 0.979). QCOVID4 discrimination for mortality was slightly higher than that for QCOVID1 and QCOVID2, but calibration was much improved. Conclusion The QCovid4 risk algorithm modelled from data during the UK Omicron wave now includes vaccination dose and prior SARS-CoV-2 infection and predicts COVID-19 mortality among people with a positive test. It has excellent performance and could be used for targeting COVID-19 vaccination and therapeutics. Although large disparities in risks of severe COVID-19 outcomes among ethnic minority groups were observed during the early waves of the pandemic, these are much reduced now with no increased risk of mortality by ethnic group.


Subject(s)
Stroke , Heart Failure , Dementia , Thromboembolism , Lupus Erythematosus, Systemic , Anemia, Sickle Cell , Diabetes Mellitus , Coronary Disease , Down Syndrome , Neoplasms , Parkinson Disease , Learning Disabilities , Death , COVID-19 , Renal Insufficiency, Chronic , Liver Cirrhosis , Arthritis, Rheumatoid , Atrial Fibrillation
13.
LANCET DIGITAL HEALTH ; 4(4), 2022.
Article in English | Web of Science | ID: covidwho-1935260

ABSTRACT

Background Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. Methods We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. Findings Between June 17, 2020, and April 14, 2021, 47 795 (75.2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86.6%] of 12 909 vs 36 415 [72.4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0.79 [95% CI 0.70-0.89], p=0.0001, for 70-79 years;0.52 [0.46-0.58], p<0.0001, for >80 years), independent of patient demographics and illness severity. 84 (54.2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27.5% in the week before June 16, 2020, to 75-80% in January, 2021. Interpretation Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.

14.
Lancet Respir Med ; 10(9): 840-850, 2022 09.
Article in English | MEDLINE | ID: covidwho-1907937

ABSTRACT

BACKGROUND: Immunosuppressive treatments inhibit vaccine-induced immunity against SARS-CoV-2. We evaluated whether a 2-week interruption of methotrexate treatment immediately after the COVID-19 vaccine booster improved antibody responses against the S1 receptor-binding domain (S1-RBD) of the SARS-CoV-2 spike protein compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. METHODS: We did an open-label, prospective, two-arm, parallel-group, multicentre, randomised, controlled, superiority trial in 26 hospitals in the UK. We recruited adults from rheumatology and dermatology clinics who had been diagnosed with an immune-mediated inflammatory disease (eg, rheumatoid arthritis, psoriasis with or without arthritis, axial spondyloarthritis, atopic dermatitis, polymyalgia rheumatica, and systemic lupus erythematosus) and who were taking low-dose weekly methotrexate (≤25 mg per week) for at least 3 months. Participants also had to have received two primary vaccine doses from the UK COVID-19 vaccination programme. We randomly assigned the participants (1:1), using a centralised validated computer randomisation program, to suspend methotrexate treatment for 2 weeks immediately after their COVID-19 booster (suspend methotrexate group) or to continue treatment as usual (continue methotrexate group). Participants, investigators, clinical research staff, and data analysts were unmasked, while researchers doing the laboratory analyses were masked to group assignment. The primary outcome was S1-RBD antibody titres 4 weeks after receiving the COVID-19 booster vaccine dose, assessed in the intention-to-treat population. This trial is registered with ISRCT, ISRCTN11442263; following the pre-planned interim analysis, recruitment was stopped early. FINDINGS: Between Sept 30, 2021 and March 3, 2022, we recruited 340 participants, of whom 254 were included in the interim analysis and had been randomly assigned to one of the two groups: 127 in the continue methotrexate group and 127 in the suspend methotrexate group. Their mean age was 59·1 years, 155 (61%) were female, 130 (51%) had rheumatoid arthritis, and 86 (34%) had psoriasis with or without arthritis. After 4 weeks, the geometric mean S1-RBD antibody titre was 22 750 U/mL (95% CI 19 314-26 796) in the suspend methotrexate group and 10 798 U/mL (8970-12 997) in the continue methotrexate group, with a geometric mean ratio (GMR) of 2·19 (95% CI 1·57-3·04; p<0·0001; mixed-effects model). The increased antibody response in the suspend methotrexate group was consistent across methotrexate dose, administration route, type of immune-mediated inflammatory disease, age, primary vaccination platform, and history of SARS-CoV-2 infection. There were no intervention-related serious adverse events. INTERPRETATION: A 2-week interruption of methotrexate treatment for people with immune-mediated inflammatory diseases resulted in enhanced boosting of antibody responses after COVID-19 vaccination. This intervention is simple, low-cost, and easy to implement, and could potentially translate to increased vaccine efficacy and duration of protection for susceptible groups. FUNDING: National Institute for Health and Care Research.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Psoriasis , Adult , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunization, Secondary , Male , Methotrexate/therapeutic use , Middle Aged , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
15.
BMJ Open ; 12(5): e062599, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1891843

ABSTRACT

INTRODUCTION: It is unknown if a temporary break in long-term immune-suppressive treatment after vaccination against COVID-19 improves vaccine response. The objective of this study was to evaluate if a 2-week interruption in low-dose weekly methotrexate treatment after SARS-CoV-2 vaccine boosters enhances the immune response compared with continuing treatment in adults with autoimmune inflammatory conditions. METHODS AND ANALYSIS: An open-label, pragmatic, prospective, parallel group, randomised controlled superiority trial with internal feasibility assessment and nested mechanistic substudy will be conducted in rheumatology and dermatology clinics in approximately 25 UK hospitals. The sample size is 560, randomised 1:1 to intervention and usual care arms. The main outcome measure is anti-spike receptor-binding domain (RBD) antibody level, collected at prebooster (baseline), 4 weeks (primary outcome) and 12 weeks (secondary outcome) post booster vaccination. Other secondary outcome measures are patient global assessments of disease activity, disease flares and their treatment, EuroQol 5- dimention 5-level (EQ-5D-5L), self-reported adherence with advice to interrupt or continue methotrexate, neutralising antibody titre against SARS-CoV-2 (mechanistic substudy) and oral methotrexate biochemical adherence (mechanistic substudy). Analysis of B-cell memory and T-cell responses at baseline and weeks 4 and 12 will be investigated subject to obtaining additional funding. The principal analysis will be performed on the groups as randomised (ie, intention to treat). The difference between the study arms in anti-spike RBD antibody level will be estimated using mixed effects model, allowing for repeated measures clustered within participants. The models will be adjusted for randomisation factors and prior SARS-CoV-2 infection status. ETHICS AND DISSEMINATION: This study was approved by the Leeds West Research Ethics Committee and Health Research Authority (REC reference: 21/HRA/3483, IRAS 303827). Participants will be required to give written informed consent before taking part in the trial. Dissemination will be via peer review publications, newsletters and conferences. Results will be communicated to policymakers. TRIAL REGISTRATION NUMBER: ISRCTN11442263.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Methotrexate/therapeutic use , Multicenter Studies as Topic , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2
16.
Nat Med ; 28(5): 1031-1041, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773989

ABSTRACT

Since its emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused hundreds of millions of cases and continues to circulate globally. To establish a novel SARS-CoV-2 human challenge model that enables controlled investigation of pathogenesis, correlates of protection and efficacy testing of forthcoming interventions, 36 volunteers aged 18-29 years without evidence of previous infection or vaccination were inoculated with 10 TCID50 of a wild-type virus (SARS-CoV-2/human/GBR/484861/2020) intranasally in an open-label, non-randomized study (ClinicalTrials.gov identifier NCT04865237 ; funder, UK Vaccine Taskforce). After inoculation, participants were housed in a high-containment quarantine unit, with 24-hour close medical monitoring and full access to higher-level clinical care. The study's primary objective was to identify an inoculum dose that induced well-tolerated infection in more than 50% of participants, with secondary objectives to assess virus and symptom kinetics during infection. All pre-specified primary and secondary objectives were met. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Eighteen (~53%) participants became infected, with viral load (VL) rising steeply and peaking at ~5 days after inoculation. Virus was first detected in the throat but rose to significantly higher levels in the nose, peaking at ~8.87 log10 copies per milliliter (median, 95% confidence interval (8.41, 9.53)). Viable virus was recoverable from the nose up to ~10 days after inoculation, on average. There were no serious adverse events. Mild-to-moderate symptoms were reported by 16 (89%) infected participants, beginning 2-4 days after inoculation, whereas two (11%) participants remained asymptomatic (no reportable symptoms). Anosmia or dysosmia developed more slowly in 15 (83%) participants. No quantitative correlation was noted between VL and symptoms, with high VLs present even in asymptomatic infection. All infected individuals developed serum spike-specific IgG and neutralizing antibodies. Results from lateral flow tests were strongly associated with viable virus, and modeling showed that twice-weekly rapid antigen tests could diagnose infection before 70-80% of viable virus had been generated. Thus, with detailed characterization and safety analysis of this first SARS-CoV-2 human challenge study in young adults, viral kinetics over the course of primary infection with SARS-CoV-2 were established, with implications for public health recommendations and strategies to affect SARS-CoV-2 transmission. Future studies will identify the immune factors associated with protection in those participants who did not develop infection or symptoms and define the effect of prior immunity and viral variation on clinical outcome.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Kinetics , Treatment Outcome , Viral Load , Young Adult
18.
Nephrol Dial Transplant ; 37(2): 271-284, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1648225

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). This study investigated adults hospitalized with COVID-19 and hypothesized that risk factors for AKI would include comorbidities and non-White race. METHODS: A prospective multicentre cohort study was performed using patients admitted to 254 UK hospitals with COVID-19 between 17 January 2020 and 5 December 2020. RESULTS: Of 85 687 patients, 2198 (2.6%) received acute kidney replacement therapy (KRT). Of 41 294 patients with biochemistry data, 13 000 (31.5%) had biochemical AKI: 8562 stage 1 (65.9%), 2609 stage 2 (20.1%) and 1829 stage 3 (14.1%). The main risk factors for KRT were chronic kidney disease (CKD) [adjusted odds ratio (aOR) 3.41: 95% confidence interval 3.06-3.81], male sex (aOR 2.43: 2.18-2.71) and Black race (aOR 2.17: 1.79-2.63). The main risk factors for biochemical AKI were admission respiratory rate >30 breaths per minute (aOR 1.68: 1.56-1.81), CKD (aOR 1.66: 1.57-1.76) and Black race (aOR 1.44: 1.28-1.61). There was a gradated rise in the risk of 28-day mortality by increasing severity of AKI: stage 1 aOR 1.58 (1.49-1.67), stage 2 aOR 2.41 (2.20-2.64), stage 3 aOR 3.50 (3.14-3.91) and KRT aOR 3.06 (2.75-3.39). AKI rates peaked in April 2020 and the subsequent fall in rates could not be explained by the use of dexamethasone or remdesivir. CONCLUSIONS: AKI is common in adults hospitalized with COVID-19 and it is associated with a heightened risk of mortality. Although the rates of AKI have fallen from the early months of the pandemic, high-risk patients should have their kidney function and fluid status monitored closely.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Cohort Studies , Hospital Mortality , Humans , Male , Prospective Studies , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom , World Health Organization
20.
Lancet ; 399(10319): 36-49, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1557000

ABSTRACT

BACKGROUND: Given the importance of flexible use of different COVID-19 vaccines within the same schedule to facilitate rapid deployment, we studied mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer-BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax). METHODS: Com-COV2 is a single-blind, randomised, non-inferiority trial in which adults aged 50 years and older, previously immunised with a single dose of ChAd or BNT in the community, were randomly assigned (in random blocks of three and six) within these cohorts in a 1:1:1 ratio to receive a second dose intramuscularly (8-12 weeks after the first dose) with the homologous vaccine, m1273, or NVX. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentrations measured by ELISA in heterologous versus homologous schedules at 28 days after the second dose, with a non-inferiority criterion of the GMR above 0·63 for the one-sided 98·75% CI. The primary analysis was on the per-protocol population, who were seronegative at baseline. Safety analyses were done for all participants who received a dose of study vaccine. The trial is registered with ISRCTN, number 27841311. FINDINGS: Between April 19 and May 14, 2021, 1072 participants were enrolled at a median of 9·4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female). In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20 114 ELISA laboratory units [ELU]/mL [95% CI 18 160 to 22 279]) and ChAd/NVX (5597 ELU/mL [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/mL [1718 to 2262]) with a GMR of 10·2 (one-sided 98·75% CI 8·4 to ∞) for ChAd/m1273 and 2·8 (2·2 to ∞) for ChAd/NVX, compared with ChAd/ChAd. In BNT-primed participants, non-inferiority was shown for BNT/m1273 (GMC 22 978 ELU/mL [95% CI 20 597 to 25 636]) but not for BNT/NVX (8874 ELU/mL [7391 to 10 654]), compared with BNT/BNT (16 929 ELU/mL [15 025 to 19 075]) with a GMR of 1·3 (one-sided 98·75% CI 1·1 to ∞) for BNT/m1273 and 0·5 (0·4 to ∞) for BNT/NVX, compared with BNT/BNT; however, NVX still induced an 18-fold rise in GMC 28 days after vaccination. There were 15 serious adverse events, none considered related to immunisation. INTERPRETATION: Heterologous second dosing with m1273, but not NVX, increased transient systemic reactogenicity compared with homologous schedules. Multiple vaccines are appropriate to complete primary immunisation following priming with BNT or ChAd, facilitating rapid vaccine deployment globally and supporting recognition of such schedules for vaccine certification. FUNDING: UK Vaccine Task Force, Coalition for Epidemic Preparedness Innovations (CEPI), and National Institute for Health Research. NVX vaccine was supplied for use in the trial by Novavax.


Subject(s)
Adjuvants, Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Immunization, Secondary/adverse effects , Immunization, Secondary/methods , Immunogenicity, Vaccine , mRNA Vaccines/administration & dosage , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , Aged , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/immunology , Female , Humans , Male , Middle Aged , Single-Blind Method , United Kingdom , Vaccination/adverse effects , Vaccination/methods , mRNA Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL